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Parametric modelling of turbulence

By O. E. BARNDORFF-NIELSEN, J. L. JENSEN AND M. SORENSEN

Department of Theoretical Statistics, Aarhus University, Aarhus C,
Denmark DK-8000

Some steps are taken towards a parametric statistical model for the velocity and
velocity derivative fields in stationary turbulence, building on the background of
existing theoretical and empirical knowledge of such fields. While the ultimate goal
is a model for the three-dimensional velocity components, and hence for the
corresponding velocity derivatives, we concentrate here on the streamwise velocity
component. Discrete and continuous time stochastic processes of the first-order
autoregressive type and with one-dimensional marginals having log-linear tails are
constructed and compared with two large data-sets. It turns out that a first-order
autoregression that fits the local correlation structure well is not capable of
describing the correlations over longer ranges. A good fit locally as well as at longer
ranges is achieved by using a process that is the sum of two independent
autoregressions. We study this type of model in some detail. We also consider a
model derived from the above-mentioned autoregressions and with dependence
structure on the borderline to long-range dependence. This model is obtained by
means of a general method for construction of processes with long-range dependence.
Some suggestions for future empirical and theoretical work are given.

1. Introduction

The study of turbulence is a field of great (long-standing as well as current)
theoretical and applied interest. An extensive view of very recent work is provided
by the two Proceedings volumes Comte-Bellot & Mathieu (1987) and Fernholz &
Fiedler (1989).

The developing theory of chaos and of fractals has, in recent years, thrown
interesting light on aspects of turbulence (see, for example, Mandelbrot 1976, 1982
Eckmann & Ruelle 1985; Jones et al. 1988), whereas there has been relatively little
progress in the study of turbulence by the statistical approach. Most of the existing
statistical treatments are based on second- and higher-order moment properties or
quite general studies of questions concerning stochastic solutions of the Navier—
Stokes equations, or both (see, for example, Monin & Yaglom 1975; Vishik et al.
1979 ; Tatsumi et al. 1986), rather than on integrated, parametric modelling by means
of stochastic process theory. Some suggestions for an approach of the latter type were
made in Barndorff-Nielsen (1979) and in the present paper we discuss some further
steps in that direction.

We focus on stationary turbulence, and begin by reviewing existing theoretical
and empirical knowledge, in §§2 and 3 respectively. This leads, in §4, to the
formulation of some desiderata for an integrated parametric modelling, and the
following sections represent an attempt to meet some of these desiderata.
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Construction of linear autoregressions with one-dimensional marginal distributions
of hyperbolic shape is considered in §5 and properties of the lag-k differences of such
processes are discussed. The hyperbolic cosine distribution turns out to be
particularly amenable for the present purposes. Furthermore, a new type of process
is discussed, which seems useful when the data show autocorrelations over long
ranges decaying more slowly than the short-range autocorrelations. Specifically, a
sum of two independent autoregressions is considered. It is demonstrated how to
construct such a process with a given one-dimensional marginal distribution.
Continuous time analogues of some of the results are discussed in §6.

There are some indications of long-range dependence in turbulence (see Nordin
et al. 1972). Furthermore, the idea of self-similarity has played a considerable role in
discussions of turbulence (see, for example, van Atta & Park 1972 ; Frisch et al. 1978).
Consequently, in §7 we review briefly the key concepts of stochastic processes with
long-range dependence and self-similarity and introduce a general method for
constructing such processes, while in §8 we apply that method to derive a process
having characteristics of the kind seen in turbulent velocity fields.

The possible long-range properties of turbulence are in a sense disjoint from the
classical theories of turbulence described in §2. The latter are concerned with the
‘inertial subrange’, i.e. with fluctuations on a very small scale where ideas of local
isotropy can be used, whereas the long-range properties are for large fluctuations
where the geometry of the flow comes into play.

In §9 we return to the main data sets reviewed in §3 and discuss these in the light
of the models developed in §§5-8.

The final §10 consists of concluding remarks and some suggestions for further
experimental and theoretical work.

2. Review of standard models for locally isotropic turbulence

It was L. F. Richardson who intuitively formulated the idea of locally isotropic
turbulence through his famous poem: ‘Big whorls have little whorls, which feed on
their velocity; and little whorls have lesser whorls, and so on to viscosity’
(Richardson 1922). When the Reynolds number Re = UL /v, where U and L are the
characteristic velocity and length scales of the overall velocity field and v is the
viscosity of the fluid, is below a critical value Re, the flow is non-turbulent.
Increasing Re to a value above the critical one, there will appear large-scale
fluctuations drawing their energy from the mean motion. If the Reynolds number is
sufficiently large the large-scale fluctuations will be unstable, i.e. they will break
down and generate second-order disturbances of a smaller scale. This process will
continue such that the energy from the mean motion is transferred to fluctuations of
a smaller and smaller scale. The process continues until scales and characteristic
velocity disturbances are reached for which the corresponding Reynolds number is
of the order Re., and the motion therefore is fluid-dynamically stable. At the
smallest scales we have the largest values of the local velocity gradients and the
kinetic energy is then lost by dissipation into heat. During this cascade process
information on the geometry and structure of the mean motion is lost and the
fluctuations become locally homogeneous and isotropic.

Kolmogorov formulated this mathematically by putting forward the hypothesis
that the multidimensional probability distributions for the relative velocities

Phil. Trans. R. Soc. Lond. A (1990)
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(g + 1ty + 1) —u(Xo, ty) (for a collection of values of » and 7) are defined uniquely by
¢ and v for r < L and 7 € L/U, where € is the mean energy dissipation and v is the
viscosity, which determines at what scales the kinetic energy of the flow is dissipated
into heat. If we let 9 = (¥3/¢)i this is a length scale, which indicates the size of the
(\ddleq where the energy d1ss1pat10n takes place. A corresponding timescale is 7,
(v/€):. Kolmogorov also hypothesized that in the range 9 <r < L,7, <7 < L/ U
which is called the inertial subrange, the relative velocities depend solely on €. Monin
& Yaglom (1975, §21.4) show by a dimensional argument that Kolmogorov’s two
hypotheses imply .
‘ EA )" =c,eryp", p<r<L, (2.1)
where A, u = u(x+r,t)—u(x,¢t). In particular, we have Kolmogorov’s ‘two-thirds
law’ for E(A,u)?, which gives rise to the ‘five-thirds law’ for the power spectrum.
Experimental findings related to (2.1) have shown that the original Kolmogorov
theory is not strictly tenable (van Atta & Park 1972; Barndorff-Nielsen 1979;
Anselmet et al. 1984). In 1962 Kolmogorov refined the theory by considering the
original predictions to hold in a conditional setting given the value of a local average

e, t) = j (1B < 7)e(x+h, t)dh

of the dissipation. In this way the intermittency of the turbulence is taken into
account, i.e. the fact that the flow contains regions with high activity and regions
with low activity. The formula (2.1) becomes

B((A,w)"|€,) = c (e, 7)"B,[r/(vV*]e,)] (2.2)
with ﬁ’n(x) ~ ax¥" for -0 and ﬂn(x) — 1 for & — o0, cf. Monin & Yaglom (1975, p. 353,
pp. 592-593). The mean of ¢, is € and Kolmogorov (1962) furthermore assumed that
Ine,, being a fluctuating quantity itself, is normally distributed with variance
A(x,t)+plog,, L/r, where u is a universal constant. If we substitute 1 for S, in (2.2)
and take mean values we then obtain the refined estimate

E(A, w)" = b, &" 5" (L [r)ismno=5), (2.3)

Note, that the power in in formula (2.1) has been reduced to fgun(n—3), where
empirical studies have indicated a value of x around 0.5. The log-normality
assumption for ¢, has been criticized on both theoretical and empirical grounds (see,
for example, Gibson & Masiello 1972).

As a prelude to the discussion below, of what is known as the #-model, we mention
that if ¢, is assumed to be gamma distributed with variance Ce™*(L/r)", rather than
log-normally distributed, then instead of (2 3) we obtain

By e T [C(L/r) T (O fry P /IO fry T . (24)

This expression is approximately d, rsan”[O L/r) = for O(L/ry* large, i.e. for
small values of r the dependence on 7 is 73" #(=9,

We now turn to a different dynamical model, introduced in Frisch et al. (1978). The
authors consider a decreasing sequence [, of scales of eddies, and assume that only
a fraction S, of space is occupied by eddies of scale [,,. Assuming 8, = (l,,/l;)™, called
the f-model, and assuming that the distributions of velocity differences within active
regions of different scales become identical under an appropriate scaling, the authors
derive the formula Lo
E(A, u)" = ¢, @"ysy~s =),

Phil. Trans. R. Soc. Lond. A (1990)
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This deviates from (2.3) and is close to (2.4).

Summing up, the above approaches based on dimensional analysis and scaling
arguments lead to relations for moments and correlation structure. A description in
terms of stochastic processes, where also the statistical distributions are taken into
account, does, however, not follow from these considerations. We stress here that the
above discussion deals with the inertial subrange of turbulence, i.e. small-scale
variations with frequencies typically less than 1 s, whereas also large scales are
considered in the following.

3. Some main data-sets

An important and useful concept in turbulence is Taylor’s frozen field hypothesis.
For the streamwise velocity component u(z,f) of a stationary turbulent field it
specifies that for any location x and for any positive r the velocity difference

w(x+r,t)—u(x,t)

follows the same distribution as the time-wise difference wu(x,¢+ At) —u(x,t) where
r =vAt and v is the mean speed. This hypothesis is used to convert spatial
measurements to temporal measurements and vice versa. It lies behind the analyses
of the two major data sets discussed below.

A review of the empirical evidence concerning the statistical properties of the
streamwise velocity and velocity derivative processes in high Reynolds number
turbulence, such as existed up till 1979, was given in Barndorff-Nielsen (1979).
Referring to that paper for details we may roughly summarize the evidence as
follows.

The one-dimensional marginal distributions of the velocity and velocity derivative
processes are generally and to a remarkable degree of approximation of a hyperbolic
shape; and very far from being gaussian laws. However, the velocity differences are
such that for large time-wise or spatial distances their distribution approaches a
parabolic, i.e. gaussian, shape, whereas for small such distances the distributional
tails become heavier than the log-linear tails characteristic of the hyperbolic shape,
i.e. in the logarithmic plotting the distributions ‘skirt out’, and the more so the
smaller the distance. See in particular figure 10 of Barndorff-Nielsen (1979).

Later studies have confirmed these findings. In particular, the remarkable
tendency for observed distributions of velocity differences to follow a hyperbolic
shape have been further put in evidence in a variety of contexts, see for instance
Dinkelacker et al. (1989) and Barndorff-Nielsen et al. (1989).

Concerning Kolmogorov’s assumption of log-normality for the distribution of the
averaged dissipation ¢,, as mentioned above, this has not been clearly established.
Gibson & Masiello (1972) considered the distribution of ¢, for different values of 7.
Although a log-normal distribution is fitted it is clear from figure 3 of their paper
that Ine, is much more concentrated near the mean value than is a normal
distribution (at least in the upper tail, the lower tail is more undetermined). This in
turn invalidates formula (2.3) for high-order moments. In general a check of the
Kolmogorov model in terms of (2.3) is very sensitive to the detailed description of the
tails of the distribution of e,.

The log—normal model deviates from the f-model discussed in §2, and Anselmet
et al. (1984) have made a very detailed experimental study of the higher order

Phil. Trans. R. Soc. Lond. A (1990)
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Parametric modelling of turbulence 443

moments in order to distinguish between the log-normal model and the S-model.
They conclude that the log—normal model fits the data best. However, this
conclusion is based on fitting a linear relation between In K(A, )" and Inr, and
looking at their figures a striking feature is that the curves are concave. So it seems
that the log—normality assumption is not suitable and that the f-model, in its pure
form, is too simplified. Interestingly, the moments (2.4) based on a gamma
distribution will give rise to a concave curve. It should be noted here, however, that
when evaluating the mean value of (2.2), leading to (2.3), it is not correct to replace
B by N
lim g, (x) =1,

Z—+00

the more so the higher n is. Actually, if we believe in the log-normal model for ¢, the
influence of f, will make the logarithm of the moments of A, u a slightly concave
function of In».

We proceed to discuss a part of another extensive data-set recorded in late
September 1985 on the beach at Ferring on the Danish west coast. (For more
information on the data-set and for an extensive study of other aspects of the data
see Mikkelsen (1988, 1989).) A 30 m mast was erected on the shore 50—70 m from the
shoreline and turbulence was measured at the top with a sonic anemometer. All three
velocity components were measured, but here we consider only the streamwise
component %. The measuring system produced values averaged over 100 ms and the
signal was sampled with a 10 Hz frequency. Three runs were made and for the first
run (run 1), which we consider here, the mean wind velocity was 7.1 ms™'. A
calculation shows that with these data we can study turbulence scales ranging from
the upper part of the inertial subrange and upwards. Thus the data will not directly
throw light on Kolmogorov’s hypotheses, but they are of interest for a description
of other aspects of turbulence. In figure 1 (see §9) 500 data points of the streamwise
velocity are shown. Figure 15 shows the corresponding lag 1 differences a, =
Uy, —U,_;- A log-histogram of the marginal distribution of the lag 1 difference reveals
log-linear tails and a density of hyperbolic shape, see figure 2.

We return to these data in §9.

4. Desiderata for a parametric modelling

The experimental and theoretical evidence concerning the statistical properties of
the velocity and velocity derivative processes # and ¢ in the mean wind direction of
a stationary, high Reynolds number, turbulent wind field — as discussed above — may
be summarized as follows.

1. The velocity and velocity derivative processes u and ¢ can be considered as
stationary stochastic processes.

2. The distribution of A, u is, for not too small », of the hyperbolic type with both
mean and skewness close to 0. For small » the distributions have heavier tails than
the hyperbolic distributions, the more so the smaller 7 is.

3. The correlation function p,(r) of the velocity process is approximately of the
form

Pu(r) = 1—const. x ré

for r in the inertial subrange.

Phil. Trans. R. Soc. Lond. A (1990)
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4. The energy dissipation process ¢,(¢) defined by (2.2) has a one-dimensional
marginal distribution whose upper tail is lighter than that of a log—normal
distribution. This contradicts Kolmogorov’s modified theory.

5. The velocity process shows autocorrelation over long ranges, perhaps it is even
close to being long-range dependent in the formal sense. For further discussion see
the §§7, 8 and 9.

Our aim is now to construct stochastic processes u that, as far as possible, exhibit
the above traits, and to compare the resulting models more closely with the main
available data.

5. Linear autoregressive processes: hyperbolic cosine
autoregressive (AR) process

It is possible to construct an AR(1) process having a given one-dimensional
marginal distribution provided that distribution is self-decomposable ; and only then
(see Cox (1981), in particular the contribution of L. Bondesson to the discussion of
that paper). In fact, if

x(n) = pr(n—1)+z(n), |p| <1, (5.1)

where the innovations z(n) are independent and identically distributed, then the
characteristic functions €' must satisfy

Cla;§) = Cla;p8) C, (25 ) (5.2)

in an obvious notation, and this is the defining property of self-decomposability.
Note the somewhat unsatisfactory feature that the distribution of the innovations
generally depends on p. For present purposes this does not, however, seem of crucial
importance.
Now, consider the lagk difference process corresponding to the autoregression
(5.1):
a®n) = x(n)—x(n—k). (5.3)

We have al(n) = —(1—p*)x(n—k)+p* 2(n—k+ 1)+ ... +2(n)
and hence, by (5.2),
O(@®:8) = Olw; =(1=p") Q) C,(z:p"71Y) ... O (2:0)

= COx; —(1=p")§) Cx;§)/Cla; p*E). (5.4)

This implies, in particular, that if the distribution of x(n) is symmetric around 0
and if p = 27Y% then C(a*;{) = C(x;§), i.e. a(n) and x(n) have identical one-
dimensional marginal distributions.

There are two important classes of one-dimensional distributions with shape of the
hyperbolic type: the hyperbolic distributions (Barndorff-Nielsen 1977; Barndorft-
Nielsen et al. 1985) and the generalized logistic distributions. As shown respectively
by Halgreen (1979) and Barndorff-Nielsen et al. (1982) both these kinds of
distributions are self-decomposable. For the present initial study we shall restrict
discussion to the case where the distributions are symmetric generalized logistic with

Phil. Trans. R. Soc. Lond. A (1990)
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mean 0 and scale parameter equal to 1. This leaves a single parameter a > 0, which
may be thought of as expressing the kurtosis.

The density function and the characteristic function of the selected generalized
logistic distribution are, respectively,

Sf(x) = B(e, )t exp (ax) /{1 +exp ()}*, (5.5)
where B denotes the beta function, and
C(x;8) = Bla+if,a—il)/B(a, &). (5.6)
The corresponding innovation process has characteristic function
C(z;8) = Bla+if, a—if)/B(a+ipf, a—ipf). (56.7)
When a =1 the expression (5.6) simplifies to
[cosh (m&)] 7!, (5.8)
the corresponding density function being
[7 cosh (3x)]7%, (5.9)

i.e. the distribution has the hyperbolic cosine form. This particular distribution has
a number of analytic properties that are useful for our purposes and henceforth we
limit our discussion to this distribution.

The characteristic function of the innovation process associated with (5.8) is

C,(z;§) = cosh (mpg)/cosh (nf). (6.10)
We have
(coshz)™t =2 E (—1D)*exp[—(2k+ 1)]x]). (5.11)
k=0

Hence C,(z; ) may be expanded as

O (2:0) = fexp [ — (1+p) 7] +exp[— (1 —p) 7D S (— 1) exp[ —2knlg]]

k=0

(5.12)

and Fourier inversion then shows that the probability density function of the
innovation variates is

[(2) = Z (= 1)*[e(z;m(1+p+2k)) +c(z;n(1 —p+2k))] (5.13)

T8

0

where ¢(z;8) denotes the density function of the Cauchy distribution with scale

parameter J, i.e.
c(z;0) = [ro(1 +22/6%)] 1. (5.14)

From (5.4) we find that the lag-one difference process a(n) of the hyperbolic cosine
autoregression has characteristic function

C,(@; ) = cosh (png)/{cosh (n¢) cosh [(1 —p) ng]} (5.15)
Phil. Trans. R. Soc. Lond. A (1990)
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and from this, and using (5.11) again, we obtain the probability density function of
a(n) as

fla) =22(= D) e(a; 2r{(1 —p) (k+ 1) +j}) +e(a; 2n{(L—p) k+j})],  (5.16)

where the summation is over all non-negative j and k.

For accordance with point 2 in our list of desiderata (§4) it is desirable that for
large k the distribution of a/*! is close to normal while for k < k,, where k, =
(In2)/(—1np), the distribution ‘skirts out’, the more so the smaller is k. (Recall
from above that if k = k, then a'* has the same distribution as z.) We conjecture
that the hyperbolic cosine process has this property. The fact that for p— 1 we have
[(z) ~ ¢(z; (1 —p)) (cf. formula (5.12)) supports this conjecture. To further substan-
tiate the conjecture we now consider the fourth standardized cumulants y, and
Yl of the processes « and al*. These are related by

Y = k(k, p) Vs (5.17)

(l_pk)4_1_p4k
[(1=p")+ L= p™ ]

where k(k,p) = (5.18)

If k is large and p is close to 1, x(k, p) is small, which corresponds to an almost normal
distribution. Precisely, «(k,p)—~0 for k(1—p)—co, the latter requirement being
equivalent to k/k,— co. For small k, for example k =1, k(k,p) > o0 when p—1,
indicating that the distribution of a' ‘skirts out’.

For use in situations where there is correlation over long ranges decaying more
slowly than the short-range correlation (such a situation will be discussed in §9),
we introduce the following type of model. Let 2™ and z® be stationary auto-
regressions defined by

D) = p;aP(n—1)+29n), i=1,2, (5.19)

where |p,| <|p,l < 1 and 2 and 2® are two independent sequences of independent,
identically distributed random variables. Set y = var (xV(n))/var (xz®(n)). We define
a process by

x(n) = 2V (n) + 2@ (n). (5.20)

The lag k autocorrelation of x is given by

p(k) = (xp§+p%)/(x+1). (5.21)

For large values of k the correlation function p(k) behaves like that of an Ar(1)
process with regression coefficient p,.

In a similar way as for AR(1) processes we can construct a process x of the type
(5.20) with a given one-dimensional marginal distribution if and only if that
distribution is selfdecomposable. More specifically, let C({) denote the characteristic
function of the given distribution. A self-decomposable distribution is infinitely
divisible and, moreover, so is C({)/C(pg) for 0 < p < 1, see Feller (1971, p. 589).
Hence C(£)° as well as C(§)°/C(pg)° are characteristic functions for 0 <8 < 1. In
particular, C(¢)° defines a self-decomposable distribution. We can then construct
independent ARr(1) processes ™™ and z® such that their marginals have characteristic
functions C()° and C(§)*~?, respectively. In conclusion, the process  defined by (5.20)
has marginals given by C({) and y = 6/(1—4).

Phil. Trans. R. Soc. Lond. A (1990)
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The above results about the lagk difference process for ARr(1) processes carry
immediately over to the new type of processes due to the independence and the
linearity of the construction of . In particular, (5.4) holds.

6. Continuous time analogues of autoregressive processes:
Laplace diffusion

Continuous time analogues of the linear Ar(1) process (5.1) are provided by certain
diffusion processes defined by stochastic differential equations of the form

t) = — B(t) dt +b(x(t) ; B) dw(t), (6.1)

where f is a regression parameter and w(tf) denotes the Wiener process.
Consider for a moment the general stochastic differential equation

da(t) = a(x(t)) dt+b(x(t)) dw(t), (6.2)

and assume that it has a unique solution x(t), which is a regular diffusion on the real
line. Under regularity conditions, x(¢) is a stationary process whose one-dimensional
distributions have probability density function given by

f(x) = cexp [2 J: :2((?;)) dy] /b%(), (6.3)

where ¢ is a constant to be chosen such that f is a probability density function, see
Kent (1978). Sufficient regularity conditions are that b(x) > 0, that f is integrable,
and that the diffusion is conservative. The last condition, which means that the
probability mass is preserved, is ensured if

foo [F(x)—F(0)] s(x) dx = JO [F(0)—F(x)] s(x)dx = o0, (6.4)
0 —

where F is the distribution function corresponding to f and
* aly) }
s(x) = expqy —2 d (6.5)
@) p{ J ) Y

is the density function of the scale measure of x(t).
As a particular example, which we require in §8, the equation

= — Ba(t) dt+{28(1 +|x(t)]) ¥ duw(t) (6.6)

has a stationary solution with one-dimensional marginal distribution the standard
Laplace distribution

fla) = ge. (6.7)

More generally, equation (6.2) has a stationary solution with a given marginal one-
dimensional density f(x) > 0 provided the function b(x(t)) is chosen to satisfy

Ly [ J f) dy+0] (6.8)

where C' is a constant. This is, of course, provided the integral exists.
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7. Processes with long-range dependence and self-similarity

A stationary stochastic process x(f) with mean 0 is said to exhibit long-range
dependence if its correlation function p(r) = E[z(t) x(t+r)]/E[x(t)]* is asymptotically,
as r— o0, of the form

p(r) ~ L(r)r—# (7.1)

for some constant H with 0 < H <1, L(r) being a slowly varying function.

Closely related to the concept of long-range dependence is the idea of self-
similarity. When z(¢) is a discrete time process with correlation function satisfying
(7.1) then for every n = 1,2, ..., the derived sum process

Z,(t) = x(nt+1)+ ... +x(nt+n)

has exactly or approximately, for large r, the same correlation function as z(f), and
in this sense the processes x,(f),n =1,2,..., are, exactly or approximately, self-
similar. The correlation functions are exactly equal if

plr) = Jora-ah,

where 8 denotes the central difference operator. The heuristic idea is that the
cumulative sum process s(t) = x(1)+...4+x(t) will exhibit the same correlation
structure whether looked at ‘close up’ or ‘from a smaller or larger distance’. For
continuous time processes s(t) is, correspondingly, defined as an integral and s(¢) is
said to be exactly self-similar with exponent H provided that for any positive ¢ the
process s,(t) = s(ct) follows the same probabilistic law as the process ¢”s(t).

A review of the roles of long range dependence and self-similarity in statistics was
given by Cox (1984). In that paper a method for construction of processes with long-
range dependence by weighted integration of processes with short-range dependence
was introduced, and this has recently been applied in a study of the relations of
nonlinearity and time irreversibility to long range dependence (Cox 1990). A
mathematically rigorous treatment of the Cox integral would seem to require the use
of integration by means of random measures. No such treatment is presently
available, and we shall instead propose a somewhat similar construction that does
not meet with the same difficulties and which turns out to be very convenient for our
purposes.

This alternative construction consists of considering a sequence of independent
continuous time processes x,(t),k = 1,2, ..., having identical probability laws, and
defining a new process x(t) by

a(t) = s (k1) wik), (7.2)
k=1

where the w(k) are certain weights, satisfying
S w(k)? < oo. (7.3)

The processes x,(*) are assumed to be stationary and square integrable with mean 0.
The process z(*) is then well-defined as an L? limit (for instance, Loeve 1963, §9.4).
We denote the common correlation function of the processes x,(*) by y(r) and the
correlation function of the weighted process x(t) by p(r).

Now suppose that for k- oo

w(k) ~ const. x k4.
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Here 4 denotes a constant that is assumed to be greater than  in order that (7.3) be
satisfied. Then, provided y(r) is a continuous function of r and y(r) -0 as r - o0, (7.1)
holds with H = A—1, and there is long range dependence if § <4 < 1.

Recently Davison & Cox (1989) studied the limit distributions of sums of a special
type of random variables having finite variance and long-range dependence, via
cumulants and simulations. In particular, the simulations revealed a tail behaviour
of the distributions close to log-linearity, as is the case for the hyperbolic
distributional shape.

8. Quasi-long-range generalized logistic processes

As indicated previously, one of our interests in the present paper is in constructing
stationary continuous time processes with long range or close to long-range
dependence whose one-dimensional marginal distributions are of the hyperbolic
shape, thus in particular having log-linear tails. We wish to use such a process as a
model for the primary velocity component of a stationary turbulent wind field. A
decisive test of the usefulness of such a model is whether the velocity differences
under the model exhibit traits like those observed experimentally and discussed in
§3.

With «(t) defined by (7.2), the characteristic function of x(f) satisfies

C(t): &) = T Clay(0): (k) 0), (8.1)

where the stationarity of the processes has been taken into account. We wish to
discuss the question of whether the processes x,(t) can be so defined that x(¢) follows
a distribution of hyperbolic shape.

The characteristic function (5.6) of the symmetric generalized logistic distribution
has, as noted in Barndorff-Nielsen ef al. (1982), the infinite product representation

B(a+il,a—il)/B(x, ) = [1 {1+ &/(+k—1)%"" (8.2)
k=1
Here the general factor [1+4{/(a+k—1)%]"! is the characteristic function of the
Laplace distribution with density
Hoa+k—1)exp[—(a+k—1)xl]. (8.3)

This distribution is self-decomposable, since it is one of the limit distributions of the
class of hyperbolic distributions. For each k, by (6.6), we can therefore define a
stationary diffusion process x,(¢) having the standard Laplace distribution (6.7) as
the one-dimensional marginal distribution. Letting

wk) = (@+k—1)"

the distribution of x(t) = Xz, (tk™ ') w(k) is then the generalized logistic distribution
(5.5). Furthermore, we have X w(k)? < co and

p(r) ~ const. x 1, (8.4)

corresponding to the border line of long-range dependence.
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Figure 1. (@) Run 1, velocity; (b) run 1, lag-1 differences.
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Figure 2. Run 1, distribution of lag-1 differences.

9. Return to data

For comparison with the data-sets discussed in Barndorff-Nielsen (1979), and
summarized in §3 above, we have simulated the hyperbolic cosine autoregression
introduced in §5 with a regression coefficient of 0.8. The resulting process and its
lag-1 differences are given in figure 3, and figure 4 shows the one-dimensional log
‘frequency distributions of the lag-1, lag-2 and lag-3 difference processes. As expected
from the discussion in §5 these three distributions have tails that are heavier than
log-linear, the more so the smaller the lag, and the lag-3 distribution is close to the
hyperbolic cosine, in accordance with the fact that In2/—Inp = 3.11.

Figure 1a shows the variation with time of the streamwise velocity component u
in run 1 from the Ferring data, and the corresponding lag-1 difference process is
plotted in figure 15. Figure 2 presents the log frequency distribution of this difference
process, and one notes that the distribution is close to the symmetric hyperbolic
shape, with a slight tendency to ‘skirts’. Thinking of the velocity process as a
hyperbolic cosine process and of the ‘reproductivity ’ of linear autoregressions under
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Figure 3. Hyperbolic cosine process with p = 0.8 (a) velocity; (b) lag-1 differences.
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Figure 4. Distribution of differences from process shown in figure 3.
(@) Lag 1; (b) lag 2; (c) lag 3.

differencing, as discussed in §5, we are led to compare these empirical velocity and
velocity difference processes with those of an autoregressive hyperbolic cosine
process with regression coefficient 3, since for that value the lag-1 process will also
have hyperbolic cosine marginals. The result of a simulation of this hyperbolic cosine
autoregression is shown together with the derived lag-1 difference process in figure 5.

The variation of the lag-1 difference process in figure 5b appears quite similar to
the observed lag-1 process in figure 1b. This is to be expected since we have chosen
the value p = 0.5 to make the tail behaviour of the marginal distribution of the
lag-1 process accord with the data. The difference process corresponding to the
hyperbolic cosine autoregression with p = 0.8 (figure 3b) shows too many extreme
and too many moderate values to be a reasonable model for the observed velocity
differences from the Ferring data. On the other hand, the hyperbolic cosine
autoregression with p = 0.8 is more similar to the observed velocity process than that
with p = 0.5. The velocity data show a behaviour with correlation over considerably
longer ranges than any of the two autoregressions, the autoregression with the
smallest value of p being least similar to the observations.

In the light of the discussion above it seems of interest to study the correlation
structure in the data more closely. The apparent correlation over long ranges could
also be caused by non-stationarity. Physically this is not very plausible, but to
investigate this possibility we studied the estimated autocorrelations for the Ferring
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Figure 5. Hyperbolic cosine process with p = 0.5 (a) velocity; (b) lag-1 differences.
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Figure 6. (¢) Run-1 autocorrelations; (b) run-1 transformed autocorrelations.

velocity difference process. The plot of these autocorrelations (figure 6a) is not very
informative about the correlation over longer ranges. If the velocity process is
stationary, then necessarily the sum of the autocorrelations for the difference process
from lag 1 and upwards equals —0.5. Therefore, in figure 65 we have plotted against
k the quantities
ko
nfy+ 20

where g; denotes the estimated lag ¢ autocorrelation for the difference process. The
curve does not invalidate the assumption about stationarity and shows a linear
behaviour for a large range of lag values. If the velocity process is an autoregression
of order one, a straight line is expected for all lag values. It therefore appears
appropriate to try to model the velocity process as the sum of two independent
autoregressions. This type of model was discussed in §5. The process with the largest
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Figure 7. (@) Sum of autoregressions, velocity; (b) sum of autoregressions, lag-1 differences.

regression coefficient describes the correlations over long ranges, and the other
modifies the correlation structure at short ranges. Before we fit a model of this type
to the Ferring data, we take a second look at figure 6a.

The relatively large negative value of the lag-1 autocorrelation in figure 6a can
presumably not be accounted for by a sum of two autoregressions. However, as
mentioned in §3, the measuring equipment at Ferring averaged over a time-range
comparable to the time between observations. This might well have affected the
lag-1 autocorrelation. To cope with this problem, we use the following model for the
velocity process. At equidistant time points separated by 0.05 s (half the sampling
distance in the data) we define a process which is the sum of two independent
autoregressions. Let p, and p, denote the two regression coefficients, and let y be the
ratio between the variance of the process with regression coefficient p, and that of the
other process. The lag k autocorrelation for this process is given by (5.21). We model
the measured velocity process by the process obtained after averaging over two time
points. The parameter values p, =0.9912, p,=0.7 and y =15.7 give auto-
correlations that fit the observed ones rather well. The corresponding curves are
plotted in figure 6. Note that p; and p, should be squared (giving 0.98 and 0.49) to
be comparable with the p values discussed earlier. A simulation of the model with the
estimated parameters is given in figure 7 together with the corresponding lag-1
difference process. For the innovation distribution we used (5.13) with p = 0.7 for
both autoregressions. The simulated sample path appears very similar to the data in
figure 1. In conclusion, it seems worthwhile to investigate more closely the modelling
of turbulence by means of processes of this type.

10. Discussion: the need for further experimental and theoretical work

In this paper, only some first steps have been taken towards constructing
parametric statistical models for turbulence and comparing these with measurements
and with the desiderata in §4. The models developed here should be more thoroughly
checked against data. We also plan to obtain better observations. In particular,
measurements with equipment that averages only over ranges that are small
compared to the inertial subrange would be desirable and are feasible.
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There are several directions in which to continue the model development. The one-
dimensional models discussed in this paper can be improved. In particular, it should
be investigated whether the correlation over long ranges is best modelled by a sum
of two autoregressions, as discussed in §9, or by a process with long-range
dependence in the formal sense.

An interesting problem is how to make the necessary step to a model for the three-
dimensional velocity vector. At Ferring all three velocity components were recorded,
so there are already data to build on. A complication is that Taylor’s frozen field
hypothesis (§3), which is used to relate temporal variation to spatial variation, is
only applicable to the streamwise velocity component. Note also that Taylor’s
hypothesis only enables us to get information about streamwise derivatives from a
time series of point measurements.

An integrated model describing all scales of the turbulence should be developed
and related to such large-scale structures as wind shear. The dynamic equations
relating the higher-order moments of the velocity field provide an important
criterion for deciding whether a given three-dimensional model makes physical sense.
These equations are derived from the Navier—Stokes equations (see Monin & Yaglom
1975, §14).

For comparison with Kolmogorov’s refined theory, it would be interesting to
study, analytically or by simulation, the distribution of the one-dimensional
marginals of the process (du/0t)* for each of the models proposed. Here, as above, u
denotes the streamwise velocity component. This process is closely related to the
dissipation process, and the one-dimensional marginals of these two processes are
usually assumed to be identical apart from a scale transformation. With a model for
the spatial variation of the three-dimensional velocity vector it would be possible to
study the distribution of the dissipation directly, whereas this can not be done with
a one-dimensional temporal model. Therefore, it is so far necessary to go via (0u/0t)%.

Another direction of research, which we plan to undertake, is the study in their
own right of the models proposed in this paper. Here we think in particular about the
sum of two autoregressions, the continuous time autoregressions and the processes
with long range dependence. For the last class of processes the self-similarity
properties are of obvious interest, as also in the turbulence context.
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